首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3085篇
  免费   719篇
  国内免费   174篇
化学   353篇
晶体学   11篇
力学   379篇
综合类   26篇
数学   581篇
物理学   2628篇
  2024年   2篇
  2023年   34篇
  2022年   69篇
  2021年   80篇
  2020年   92篇
  2019年   75篇
  2018年   66篇
  2017年   122篇
  2016年   116篇
  2015年   102篇
  2014年   208篇
  2013年   218篇
  2012年   193篇
  2011年   230篇
  2010年   147篇
  2009年   203篇
  2008年   209篇
  2007年   220篇
  2006年   228篇
  2005年   168篇
  2004年   174篇
  2003年   137篇
  2002年   121篇
  2001年   117篇
  2000年   98篇
  1999年   79篇
  1998年   74篇
  1997年   72篇
  1996年   61篇
  1995年   47篇
  1994年   33篇
  1993年   26篇
  1992年   29篇
  1991年   23篇
  1990年   25篇
  1989年   8篇
  1988年   16篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有3978条查询结果,搜索用时 218 毫秒
1.
Shi-Jie Pan 《中国物理 B》2022,31(6):60304-060304
Neighborhood preserving embedding (NPE) is an important linear dimensionality reduction technique that aims at preserving the local manifold structure. NPE contains three steps, i.e., finding the nearest neighbors of each data point, constructing the weight matrix, and obtaining the transformation matrix. Liang et al. proposed a variational quantum algorithm (VQA) for NPE [Phys. Rev. A 101 032323 (2020)]. The algorithm consists of three quantum sub-algorithms, corresponding to the three steps of NPE, and was expected to have an exponential speedup on the dimensionality n. However, the algorithm has two disadvantages: (i) It is not known how to efficiently obtain the input of the third sub-algorithm from the output of the second one. (ii) Its complexity cannot be rigorously analyzed because the third sub-algorithm in it is a VQA. In this paper, we propose a complete quantum algorithm for NPE, in which we redesign the three sub-algorithms and give a rigorous complexity analysis. It is shown that our algorithm can achieve a polynomial speedup on the number of data points m and an exponential speedup on the dimensionality n under certain conditions over the classical NPE algorithm, and achieve a significant speedup compared to Liang et al.'s algorithm even without considering the complexity of the VQA.  相似文献   
2.
Surface plasmon can trigger or accelerate many photochemical reactions, especially useful in energy and environmental industries. Recently, molecular adsorption has proven effective in modulating plasmon-mediated photochemistry, however the realized chemical reactions are limited and the underlying mechanism is still unclear. Herein, by using in situ dark-field optical microscopy, the plasmon-mediated oxidative etching of silver nanoparticles (Ag NPs), a typical hot-hole-driven reaction, is monitored continuously and quantitatively. The presence of thiol or thiophenol molecules is found essential in the silver oxidation. In addition, the rate of silver oxidation is modulated by the choice of different thiol or thiophenol molecules. Compared with the molecules having electron donating groups, the ones having electron accepting groups accelerate the silver oxidation dramatically. The thiol/thiophenol modulation is attributed to the modulation of the charge separation between the Ag NPs and the adsorbed thiol or thiophenol molecules. This work demonstrates the great potential of molecular adsorption in modulating the plasmon-mediated photochemistry, which will pave a new way for developing highly efficient plasmonic photocatalysts.  相似文献   
3.
Wen-Liang Xie 《中国物理 B》2022,31(10):108106-108106
The relationship between the spatial position of the diamond seed and growth mode is investigated with an enclosed-type holder for single-crystal diamond growth using the microwave plasma chemical vapor deposition epitaxial method. The results demonstrate that there are three main regions by varying the spatial position of the seed. Due to the plasma concentration occurring at the seed edge, a larger depth is beneficial to transfer the plasma to the holder surface and suppress the polycrystalline diamond rim around the seed edge. However, the plasma density at the edge decreases drastically when the depth is too large, resulting in the growth of a vicinal grain plane and the reduction of surface area. By adopting an appropriate spatial location, the size of single-crystal diamond can be increased from 7 mm × 7 mm × 0.35 mm to 8.6 mm × 8.6 mm × 2.8 mm without the polycrystalline diamond rim.  相似文献   
4.
In recent years, spatial self-phase modulation (SSPM) with two-dimensional (2D) materials has attracted the attention of many researchers as an emerging and ubiquitous nonlinear optical effect. In this review, the state of the art of 2D material-based SSPM is summarized. SSPM measures or tunes the nonlinearity of 2D materials, and it is also an effective approach to study the band structure of 2D materials. Several modified forms of SSPM, such as high-order, white-light-excited, vector field excited, and optically nonlinearly enhanced SSPM are also presented. Subsequently, the physical origin of the SSPM formation mechanism is compared and analyzed. Furthermore, the applications of SSPM with 2D materials, including passive photonic devices, generation of Bessel beams, and identifying the mode of the orbital angular momentum, are listed. Finally, several urgent problems of the SSPM with 2D materials, potential applications, and prospects for future development are presented.  相似文献   
5.
The fundamental concept of phase discussed in this tutorial aimed at providing students with an explanation of the delays and processing parameters they may find in nuclear magnetic resonance (NMR) pulse programs. We consider the phase of radio-frequency pulses, receiver, and magnetization and how all these parameters are related to phases and offsets of signals in spectra. The impact of the off-resonance effect on the phase of the magnetization is discussed before presenting an overview of how adjustment of the time reference of the free induction decay avoids first-order correction of the phase of spectra. The main objective of this tutorial is to show how the relative phase of a pulse and the receiver can be used to change the reference frequency along direct and indirect dimensions of NMR experiments. Unusual of phase incrementation with non-90° angles will be illustrated on one- and two-dimensional NMR spectra.  相似文献   
6.
7.
8.
AlGaN/GaN HEMT外部边缘电容Cofd是由栅极垂直侧壁与二维电子气水平壁之间的电场构成的等效电容.本文基于保角映射法对Cofd进行物理建模,考虑沟道长度调制效应,研究外部偏置、阈值电压漂移和温度变化对Cofd的影响:随着漏源偏压从零开始增加,Cofd先保持不变再开始衰减,其衰减速率随栅源偏压的增加而减缓;AlGaN势垒层中施主杂质浓度的减小和Al组分的减小都可引起阈值电压的正向漂移,正向阈值漂移会加强沟道长度调制效应对Cofd的影响,导致Cofd呈线性衰减.在大漏极偏压工作情况下,Cofd对器件工作温度的变化更加敏感.  相似文献   
9.
We proposed an electro-optic modulator with two-bus one-ring (TBOR) structure to improve the extinction ratio and reduce insert loss. It has a dual output compared with one-bus one-ring structure. In addition, double-layer graphene makes it possible for the modulation in the visible to mid-infrared wavelength range. It shows that this new electro-optic modulator can present two switching states well with low insertion loss, high absorption and high extinction ratio. At λ=1550 nm, when the switching states are based on the chemical potential, μc=0.38 eV and μc=0.4 eV, the insertion losses of both output ports are less than 2 dB, the absorption of the output port coupled via a micro-ring reaches 45 dB and the extinction ratio reaches 14 dB. When the refractive index of the dielectric material is 4.2, the applied voltage will be less than 1.2 V, thus can be used in low-voltage CMOS technology.  相似文献   
10.
The design and development of non-noble metal alternatives with superior performance and promising long-term stability that is comparable or even better than those of noble-metal-based catalysts is a significant challenge. Here, we report the thermal-induced phase engineering of non-noble-metal-based nanowires with superior electrochemical activity and stability for the methanol oxidation reaction (MOR) under alkaline conditions. The optimized Cu–Ni nanowires deliver an unprecedented mass activity of 425 mA mg−1, which is 4.3 times higher than that of the untreated one. Detailed catalytic investigations show that the enhanced performance is due to the large active area, the increased number of active sites (NiOOH), and fast methanol electrooxidation kinetics. In addition, the generated hollow feature in the nanowires provides a unique void space to release the volume expansion, where the activity can be maintained for 5 h without a distinct activity decay. The present work emphasizes the importance of precisely phase modulating of nanomaterials for the design of non-noble metal electrocatalysts towards the MOR, which opens up a new pathway for the design of cost-effective electrocatalysts with promising activity and long-term stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号